閃電是怎麼來的

來源:魅力女性吧 9.29K
閃電是怎麼來的

如果我們在兩根電極之間加很高的電壓,並把它們慢慢地靠近。當兩根電極靠近到一定的距離時,在它們之間就會出現電火花,這就是所謂“弧光放電”現象。

雷雨雲所產生的閃電,與上面所説的弧光放電非常相似,只不過閃電是轉瞬即逝,而電極之間的火花卻可以長時間存在。因為在兩根電極之間的高電壓可以人為地維持很久,而雷雨雲中的電荷經放電後很難馬上補充。當聚集的電荷達到一定的數量時,在雲內不同部位之間或者雲與地面之間就形成了很強的電場。電場強度平均可以達到幾千伏特/釐米,局部區域可以高達1萬伏特/釐米。這麼強的電場,足以把雲內外的大氣層擊穿,於是在雲與地面之間或者在雲的不同部位之間以及不同雲塊之間激發出耀眼的閃光。這就是人們常説的閃電。

肉眼看到的一次閃電,其過程是很複雜的。當雷雨雲移到某處時,雲的中下部是強大負電荷中心,雲底相對的下墊面變成正電荷中心,在雲底與地面間形成強大電場。在電荷越積越多,電場越來越強的情況下,雲底首先出現大氣被強烈電離的一段氣柱,稱梯級先導。這種電離氣柱逐級向地面延伸,每級梯級先導是直徑約5米、長50米、電流約100安培的暗淡光柱,它以平均約150000米/秒的高速度一級一級地伸向地面,在離地面5—50米左右時,地面便突然向上回擊,回擊的通道是從地面到雲底,沿着上述梯級先導開闢出的電離通道。回擊以5萬公里/秒的更高速度從地面馳向雲底,發出光亮無比的光柱,歷時40微秒,通過電流超過1萬安培,這即第一次閃擊。相隔幾秒之後,從雲中一根暗淡光柱,攜帶巨大電流,沿第一次閃擊的路徑飛馳向地面,稱直竄先導,當它離地面5—50米左右時,地面再向上回擊,再形成光亮無比光柱,這即第二次閃擊。接着又類似第二次那樣產生第三、四次閃擊。通常由3—4次閃擊構成一次閃電過程。一次閃電過程歷時約0.25秒,在此短時間內,窄狹的閃電通道上要釋放巨大的電能,因而形成強烈的爆炸,產生衝擊波,然後形成聲波向四周傳開,這就是雷聲或説“打雷”。

閃電的結構

被人們研究得比較詳細的是線狀閃電,我們就以它為例來講述閃電的結構。閃電是大氣中脈衝式的放電現象。一次閃電由多次放電脈衝組成,這些脈衝之間的間歇時間都很短,只有百分之幾秒。脈衝一個接着一個,後面的脈衝就沿着第一個脈衝的通道行進。現在已經研究清楚,每一個放電脈衝都由一個“先導”和一個‘回擊”構成。第一個放電脈衝在爆發之前,有一個準備階段—“階梯先導”放電過程:在強電場的推動下,雲中的自由電荷很快地向地面移動。在運動過程中,電子與空氣分子發生碰撞,致使空氣輕度電離併發出微光。第一次放電脈衝的先導是逐級向下傳播的,象一條發光的舌頭。開頭,這光舌只有十幾米長,經過千分之幾秒甚至更短的時間,光舌便消失然後就在這同一條通道上,又出現一條較長的光舌(約30米長),轉瞬之間它又消失接着再出現更長的光舌……光舌採取“蠶食”方式步步向地面逼近。經過多次放電—消失的過程之後,光舌終於到達地面。因為這第一個放電脈衝的先導是一個階梯一個階梯地從雲中向地面傳播的,所以叫做“階梯先導”。在光舌行進的通道上,空氣已被強烈地電離,它的導電能力大為增加。空氣連續電離的過程只發生在一條很狹窄的通道中,所以電流強度很大。

當第一個先導即階梯先導到達地面後,立即從地面經過已經高度電離了的空氣通道向雲中流去大量的電荷。這股電流是如此之強,以至空氣通道被燒得白熾耀眼,出現一條彎彎曲曲的細長光柱。這個階段叫做“回擊”階段,也叫“主放電”階段。階梯先導加上第一次回擊,就構成了第一次脈衝放電的全過程,其持續時間只有百分之一秒。

740)h=740" border=undefined> 第一個脈衝放電過程結束之後,只隔一段極其短暫的時間(百分之四秒),又發生第二次脈衝放電過程。第二個脈衝也是從先導開始,到回擊結束。但由於經第一個脈衝放電後,“堅冰已經打破,航線已經開通”,所以第二個脈衝的先導就不再逐級向下,而是從雲中直接到達地面。這種先導叫做“直竄先導”。直竄先導到達地面後,約經過千分之幾秒的時間,就發生第二次回擊,而結束第二個脈衝放電過程。緊接着再發生第三個、第四個….。直竄先導和回擊,完成多次脈衝放電過程。由於每一次脈衝放電都要大量地消耗雷雨雲中累積的電荷,因而以後的主放電過程就愈來愈弱,直到雷雨雲中的電荷儲備消耗殆盡,脈衝放電方能停止,從而結束一次閃電過程。

閃電的成因

雷暴時的大氣電場與晴天時有明顯的差異,產生這種差異的原因,是雷雨雲中有電荷的累積並形成雷雨雲的極性,由此產生閃電而造成大氣電場的巨大變化。但是雷雨雲的電是怎麼來的呢? 也就是説,雷雨雲中有哪些物理過程導致了它的起電?為什麼雷雨雲中能夠累積那麼多的電荷並形成有規律的分佈?本節將要回答這些問題。前面我們已經講過,雷雨雲形成的宏觀過程以及雷雨雲中發生的微物理過程,與雲的起電有密切聯繫。科學家們對雷雨雲的起電機制及電荷有規律的分佈,進行了大量的觀測和實驗,積累了許多資料並提出了各種各樣的解釋,有些論點至今也還有爭論。歸納起來,雲的起電機制主要有如下幾種:

A.對流雲初始階段的“離子流”假説

大氣中總是存在着大量的正離子和負離子,在雲中的水滴上,電荷分佈是不均勻的:最外邊的分子帶負電,裏層帶正電,內層與外層的電位差約高0.25伏特。為了平衡這個電位差,水滴必須“優先’吸收大氣中的負離子,這樣就使水滴逐漸帶上了負電荷。當對流發展開始時,較輕的正離子逐漸被上升氣流帶到雲的上部而帶負電的雲滴因為比較重,就留在下部,造成了正負電荷的分離。

B.冷雲的電荷積累

當對流發展到一定階段,雲體伸入0℃層以上的高度後,雲中就有了過冷水滴、霰粒和冰晶等。這種由不同相態的水汽凝結物組成且温度低於0℃的雲,叫冷雲。冷雲的電荷形成和積累過程有如下幾種:

a. 冰晶與霰粒的摩擦碰撞起電

霰粒是由凍結水滴組成的,呈白色或乳白色,結構比較鬆脆。由於經常有過冷水滴與它撞凍並釋放出潛熱,故它的温度一般要比冰晶來得高。在冰晶中含有一定量的自由離子(OH-或OH+),離子數隨温度升高而增多。由於霰粒與冰晶接觸部分存在着温差,高温端的自由離子必然要多於低温端,因而離子必然從高温端向低温端遷移。離子遷移時,較輕的帶正電的氫離子速度較快,而帶負電的較重的氫氧離子(OH-)則較慢。因此,在一定時間內就出現了冷端H+離子過剩的現象,造成了高温端為負,低温端為正的電極化。當冰晶與霰粒接觸後又分離時,温度較高的霰粒就帶上負電,而温度較低的冰晶則帶正電。在重力和上升氣流的作用下,較輕的帶正電的冰晶集中到雲的上部,較重的帶負電的霞粒則停留在雲的下部,因而造成了冷雲的上部帶正電而下部帶負電。

b. 過冷水滴在霰粒上撞凍起電

在雲層中有許多水滴在温度低於0℃時仍不凍結,這種水滴叫過冷水滴。過冷水滴是不穩定的,只要它們被輕輕地震動一下,馬上就會凍結成冰粒。當過冷水滴與霰粒碰撞時,會立即凍結,這叫撞凍。當發生撞凍時,過冷水滴的外部立即凍成冰殼,但它內部仍暫時保持着液態,並且由於外部凍結釋放的潛熱傳到內部,其內部液態過冷水的温度比外面的冰殼來得高。温度的差異使得凍結的過冷水滴外部帶正電,內部帶負電。當內部也發生凍結時,雲滴就膨脹分裂,外表皮破裂成許多帶正電的小冰屑,隨氣流飛到雲的上部,帶負電的凍滴核心部分則附在較重的霰粒上,使霰粒帶負電並停留在雲的中、下部。

c. 水滴因含有稀薄的鹽分而起電

除了上述冷雲的兩種起電機制外,還有人提出了由於大氣中的水滴含有稀薄的鹽分而產生的起電機制。當雲滴凍結時,冰的晶格中可以容納負的氯離子(Cl-),卻排斥正的鈉離子(Na+)。因此,水滴已凍結的部分就帶負電,而未凍結的外表面則帶正電(水滴凍結時,是從裏向外進行的)。由水滴凍結而成的霰粒在下落過程中,摔掉表面還來不及凍結的水分,形成許多帶正電的小云滴,而已凍結的核心部分則帶負電。由於重力和氣流的分選作用,帶正電的小滴被帶到雲的上部,而帶負電的霰粒則停留在雲的中、下部。

d.暖雲的電荷積累

上面講了一些冷雲起電的主要機制。在熱帶地區,有一些雲整個雲體都位於0℃以上區域,因而只含有水滴而沒有固態水粒子。這種雲叫做暖雲或“水雲”。暖雲也會出現雷電現象。在中緯度地區的雷暴雲,雲體位於0℃等温線以下的部分,就是雲的暖區。在雲的暖區裏也有起電過程發生。

在雷雨雲的發展過程中,上述各種機制在不同發展階段可能分別起作用。但是,最主要的起電機制還是由於水滴凍結造成的。大量觀測事實表明,只有當雲頂呈現纖維狀絲縷結構時,雲才發展成雷雨雲。飛機觀測也發現,雷雨雲中存在以冰、雪晶和霰粒為主的大量雲粒子,而且大量電荷的累積即雷雨雲迅猛的起電機制,必須依靠霰粒生長過程中的碰撞、撞凍和摩擦等才能發生。

奇形怪狀的閃電

閃電的形狀有好幾種:最常見的有線狀(或枝狀)閃電和片狀閃電,球狀閃電是一種十分罕見的閃電形狀。如果仔細區分,還可以劃分出帶狀閃電、聯珠狀閃電和火箭狀閃電等形狀。線狀閃電或枝狀閃電是人們經常看見的一種閃電形狀。它有耀眼的光芒和很細的光線。整個閃電好象橫向或向下懸掛的枝杈縱橫的樹枝,又象地圖上支流很多的河流。

線狀閃電與其它放電不同的地方是它有特別大的電流強度,平均可以達到幾萬安培,在少數情況下可達20萬安培。這麼大的電流強度。可以毀壞和搖動大樹,有時還能傷人。當它接觸到建築物的時候,常常造成“雷擊”而引起火災。線狀閃電多數是雲對地的放電。

片狀閃電也是一種比較常見的閃電形狀。它看起來好象是在雲面上有一片閃光。這種閃電可能是雲後面看不見的火花放電的回光,或者是雲內閃電被雲滴遮擋而造成的漫射光,也可能是出現在雲上部的一種叢集的或閃爍狀的獨立放電現象。片狀閃電經常是在雲的強度已經減弱,降水趨於停止時出現的。它是一種較弱的放電現象,多數是雲中放電。

球狀閃電雖説是一種十分罕見的閃電形狀,卻最引人注目。它象一團火球,有時還象一朵發光的盛開着的“繡球”菊花。它約有人頭那麼大,偶爾也有直徑幾米甚至幾十米的。球狀閃電有時候在空中慢慢地轉游,有時候又完全不動地懸在空中。它有時候發出白光,有時候又發出象流星一樣的粉紅色光。球狀閃電“喜歡”鑽洞,有時候,它可以從煙囱、窗户、門縫鑽進屋內,在房子裏轉一圈後又溜走。球狀閃電有時發出“噝噝”的聲音,然後一聲悶響而消失有時又只發出微弱的噼啪聲而不知不覺地消失。球狀閃電消失以後,在空氣中可能留下一些有臭味的氣煙,有點象臭氧的味道。球狀閃電的生命史不長,大約為幾秒鐘到幾分鐘。

帶狀閃電。它由連續數次的放電組成,在各次閃電之間,閃電路徑因受風的影響而發生移動,使得各次單獨閃電互相靠近,形成一條帶狀。帶的寬度約為10米。這種閃電如果擊中房屋,可以立即引起大面積燃燒。

聯珠狀閃電看起來好象一條在雲幕上滑行或者穿出雲層而投向地面的發光點的聯線,也象閃光的珍珠項鍊。有人認為聯珠狀閃電似乎是從線狀閃電到球狀閃電的過渡形式。聯珠狀閃電往往緊跟在線狀閃電之後接踵而至,幾乎沒有時間間隔。

火箭狀閃電比其它各種閃電放電慢得多,它需要l—1.5秒鐘時間才能放電完畢。可以用肉眼很容易地跟蹤觀測它的活動。

人們憑自己的眼睛就可以觀測到閃電的各種形狀。不過,要仔細觀測閃電,最好採用照相的方法。高速攝影機既可以記錄下閃電的形狀,還可以觀測到閃電的發展過程。使用某些特種照相機(如移動式照相機),還可以研究閃電的結構。

熱門標籤