兩個正態分佈相乘的期望和方差

來源:魅力女性吧 1.95W
兩個正態分佈相乘的期望和方差

正態分佈的期望為均值,均值為正太分佈的對稱軸。它們的積為兩個均值的乘積。

如果 U 與 V 是期望值為 0、方差為 1 的兩個獨立正態分佈隨機變量的話,那麼比值 U/V 為柯西分佈,相乘是聯合正態分佈。

態曲線的高峯位於正中央,即均數所在的位置。

對稱性:正態曲線以均數為中心,左右對稱,曲線兩端永遠不與橫軸相交。

均勻變動性:正態曲線由均數所在處開始,分別向左右兩側逐漸均勻下降。

曲線與橫軸間的面積總等於1,相當於概率密度函數的函數從正無窮到負無窮積分的概率為1。即頻率的總和為

由於X與e獨立,所以E(X|Y)=E(X|X+e)=E(X|X)=X

Var(X|Y)=Var(X|X+e)=Var(X|X)=E(X^2|X)-(E(X|X))^2=(X^2)-X^2=0

如果只知道Z=X+Y的分佈,而沒有其他任何關於X和Y的先驗信息,是無法確定X和Y的分佈的,例如:若Z~N(0,d^2),X和Y都是有無窮多可能的。

設正態分佈概率密度函數是f(x)=[1/(√2π)t]*e^[-(x-u)^2/2(t^2)]

∫e^[-(x-u)^2/2(t^2)]dx=(√2π)t.(*)

求均值

對(*)式兩邊對u求導:

∫{e^[-(x-u)^2/2(t^2)]*[2(u-x)/2(t^2)]dx=0

約去常數,再兩邊同乘以1/(√2π)t得:

∫[1/(√2π)t]*e^[-(x-u)^2/2(t^2)]*(u-x)dx=0

把(u-x)拆開,再移項:

∫x*[1/(√2π)t]*e^[-(x-u)^2/2(t^2)]dx=u*∫[1/(√2π)t]*e^[-(x-u)^2/2(t^2)]dx

也就是

∫x*f(x)dx=u*1=u

這樣就正好湊出了均值的定義式,證明了均值就是u。

(2)方差

過程和求均值是差不多的,我就稍微略寫一點。

對(*)式兩邊對t求導:

∫[(x-u)^2/t^3]*e^[-(x-u)^2/2(t^2)]dx=√2π

移項:

∫[(x-u)^2]*[1/(√2π)t]*e^[-(x-u)^2/2(t^2)]dx=t^2

也就是

∫(x-u)^2*f(x)dx=t^2

正好湊出了方差的定義式,從而結論得證。

熱門標籤